项目的完整代码在 C2j-Compiler <https://github.com/dejavudwh/C2j-Compiler>

前言

在上一篇解释完了一些基础的Java字节码指令后,就可以正式进入真正的代码生成部分了。但是这部分先说的是代码生成依靠的几个类,也就是用来生成指令的操作。

这一篇用到的文件都在codegen下:

* Directive.java
* Instruction.java
* CodeGenerator.java
* ProgramGenerator.java
Directive.java

这个是枚举类,用来生成一些比较特殊的指令

都生成像声明一个类或者一个方法的范围的指令,比较简单。
public enum Directive { CLASS_PUBLIC(".class public"), END_CLASS(".end
class"), SUPER(".super"), FIELD_PRIVATE_STATIC(".field private static"),
METHOD_STATIC(".method static"), METHOD_PUBLIC(".method public"),
FIELD_PUBLIC(".field public"), METHOD_PUBBLIC_STATIC(".method public static"),
END_METHOD(".end method"), LIMIT_LOCALS(".limit locals"), LIMIT_STACK(".limit
stack"), VAR(".var"), LINE(".line"); private String text; Directive(String
text) { this.text = text; } public String toString() { return text; } }
Instruction.java

这也是一个枚举类,用来生成一些基本的指令
public enum Instruction { LDC("ldc"), GETSTATIC("getstatic"),
SIPUSH("sipush"), IADD("iadd"), IMUL("imul"), ISUB("isub"), IDIV("idiv"),
INVOKEVIRTUAL("invokevirtual"), INVOKESTATIC("invokestatic"),
INVOKESPECIAL("invokespecial"), RETURN("return"), IRETURN("ireturn"),
ILOAD("iload"), ISTORE("istore"), NEWARRAY("newarray"), NEW("new"), DUP("dup"),
ASTORE("astore"), IASTORE("iastore"), ALOAD("aload"), PUTFIELD("putfield"),
GETFIELD("getfield"), ANEWARRAY("anewarray"), AASTORE("aastore"),
AALOAD("aaload"), IF_ICMPEG("if_icmpeq"), IF_ICMPNE("if_icmpne"),
IF_ICMPLT("if_icmplt"), IF_ICMPGE("if_icmpge"), IF_ICMPGT("if_icmpgt"),
IF_ICMPLE("if_icmple"), GOTO("goto"), IALOAD("iaload"); private String text;
Instruction(String s) { this.text = s; } public String toString() { return
text; } }
CodeGenerator.java

重点来了,生成的逻辑主要都在CodeGenerator和ProgramGenerator里,CodeGenerator是ProgramGenerator的父类

CodeGenerator的构造函数new了一个输出流,用来输出字节码到xxx.j里
public CodeGenerator() { String assemblyFileName = programName + ".j"; try {
bytecodeFile = new PrintWriter(new PrintStream(new File(assemblyFileName))); }
catch (FileNotFoundException e) { e.printStackTrace(); } }

emit、emitString、emitDirective、emitBlankLine都属于输出基本指令的方法,都有多个重载方法来应对不一样操作和操作数。需要注意的是,有的指令可能需要先缓存起来,在最后的时候一起提交,比如buffered、classDefine就是用来判断是不是应该先缓存的布尔值
public void emitString(String s) { if (buffered) { bufferedContent += s +
"\n"; return; } if (classDefine) { classDefinition += s + "\n"; return; }
bytecodeFile.print(s); bytecodeFile.flush(); } public void emit(Instruction
opcode) { if (buffered) { bufferedContent += "\t" + opcode.toString() + "\n";
return; } if (classDefine) { classDefinition += "\t" + opcode.toString() +
"\n"; return; } bytecodeFile.println("\t" + opcode.toString());
bytecodeFile.flush(); ++instructionCount; } public void emitDirective(Directive
directive, String operand1, String operand2, String operand3) { if (buffered) {
bufferedContent += directive.toString() + " " + operand1 + " " + operand2 + " "
+ operand3 + "\n"; return; } if (classDefine) { classDefinition +=
directive.toString() + " " + operand1 + " " + operand2 + " " + operand3 + "\n";
return; } bytecodeFile.println(directive.toString() + " " + operand1 + " " +
operand2 + " " + operand3); ++instructionCount; } public void emitBlankLine() {
if (buffered) { bufferedContent += "\n"; return; } if (classDefine) {
classDefinition += "\n"; return; } bytecodeFile.println();
bytecodeFile.flush(); }
ProgramGenerator.java

ProgramGenerator继承了CodeGenerator,也就是继承了一些基本的操作,在上一篇像结构体、数组的指令输出都在这个类里

处理嵌套

先看四个属性,这四个属性主要是就来处理嵌套的分支和循环。
private int branch_count = 0; private int branch_out = 0; private String
embedded = ""; private int loopCount = 0;
*
当没嵌套一个ifelse语句时候 embedded属性就会加上一个字符‘i’,而当退出一个分支的时候,就把这个‘i’切割掉

*
branch_count和branch_out都用来标志相同作用域的分支跳转

*
也就是说如果有嵌套就用embedded来处理,如果是用一个作用域的分支就用branch_count和branch_out来做标志
public void incraseIfElseEmbed() { embedded += "i"; } public void
decraseIfElseEmbed() { embedded = embedded.substring(1); } public void
emitBranchOut() { String s = "\n" + embedded + "branch_out" + branch_out +
":\n"; this.emitString(s); branch_out++; }
loopCount则是对嵌套循环的处理
public void emitLoopBranch() { String s = "\n" + "loop" + loopCount + ":" +
"\n"; emitString(s); } public String getLoopBranch() { return "loop" +
loopCount; } public void increaseLoopCount() { loopCount++; }
处理结构体


putStructToClassDeclaration是定义结构体的,也就是new一个类。declareStructAsClass则是处理结构体里的变量,也就是相当于处理类的属性

* 结构体如果已经类的定义的话,就会加入structNameList,不要进行重复的定义
* symbol.getValueSetter()如果不是空的话就表明是一个结构体数组,这样就直接从数组加载这个实例,不用在堆栈上创建
* declareStructAsClass则是依照上一篇说的Java字节码有关类的指令来创建一个类 public void
putStructToClassDeclaration(Symbol symbol) { Specifier sp =
symbol.getSpecifierByType(Specifier.STRUCTURE); if (sp == null) { return; }
StructDefine struct = sp.getStruct(); if
(structNameList.contains(struct.getTag())) { return; } else {
structNameList.add(struct.getTag()); } if (symbol.getValueSetter() == null) {
this.emit(Instruction.NEW, struct.getTag()); this.emit(Instruction.DUP);
this.emit(Instruction.INVOKESPECIAL, struct.getTag() + "/" + "<init>()V"); int
idx = this.getLocalVariableIndex(symbol); this.emit(Instruction.ASTORE, "" +
idx); } declareStructAsClass(struct); } private void
declareStructAsClass(StructDefine struct) { this.setClassDefinition(true);
this.emitDirective(Directive.CLASS_PUBLIC, struct.getTag());
this.emitDirective(Directive.SUPER, "java/lang/Object"); Symbol fields =
struct.getFields(); do { String fieldName = fields.getName() + " "; if
(fields.getDeclarator(Declarator.ARRAY) != null) { fieldName += "["; } if
(fields.hasType(Specifier.INT)) { fieldName += "I"; } else if
(fields.hasType(Specifier.CHAR)) { fieldName += "C"; } else if
(fields.hasType(Specifier.CHAR) && fields.getDeclarator(Declarator.POINTER) !=
null) { fieldName += "Ljava/lang/String;"; }
this.emitDirective(Directive.FIELD_PUBLIC, fieldName); fields =
fields.getNextSymbol(); } while (fields != null);
this.emitDirective(Directive.METHOD_PUBLIC, "<init>()V");
this.emit(Instruction.ALOAD, "0"); String superInit =
"java/lang/Object/<init>()V"; this.emit(Instruction.INVOKESPECIAL, superInit);
fields = struct.getFields(); do { this.emit(Instruction.ALOAD, "0"); String
fieldName = struct.getTag() + "/" + fields.getName(); String fieldType = ""; if
(fields.hasType(Specifier.INT)) { fieldType = "I";
this.emit(Instruction.SIPUSH, "0"); } else if (fields.hasType(Specifier.CHAR))
{ fieldType = "C"; this.emit(Instruction.SIPUSH, "0"); } else if
(fields.hasType(Specifier.CHAR) && fields.getDeclarator(Declarator.POINTER) !=
null) { fieldType = "Ljava/lang/String;"; this.emit(Instruction.LDC, " "); }
String classField = fieldName + " " + fieldType;
this.emit(Instruction.PUTFIELD, classField); fields = fields.getNextSymbol(); }
while (fields != null); this.emit(Instruction.RETURN);
this.emitDirective(Directive.END_METHOD);
this.emitDirective(Directive.END_CLASS); this.setClassDefinition(false); }
获取堆栈信息


其它有关Java字节码其实都是根据上一篇来完成的,逻辑不复杂,现在来看一个方法:getLocalVariableIndex,这个方法是获取变量当前在队列里的位置的

* 先拿到当前执行的函数,然后拿到函数的对应参数,再反转(这和参数压栈的顺序有关)
* 然后把当前符号对应作用域的符号都添加到列表里
* 之后遍历这个列表就可以算出这个符号对应在队列里的位置 public int getLocalVariableIndex(Symbol symbol)
{ TypeSystem typeSys = TypeSystem.getInstance(); String funcName =
nameStack.peek(); Symbol funcSym = typeSys.getSymbolByText(funcName, 0,
"main"); ArrayList<Symbol> localVariables = new ArrayList<>(); Symbol s =
funcSym.getArgList(); while (s != null) { localVariables.add(s); s =
s.getNextSymbol(); } Collections.reverse(localVariables); ArrayList<Symbol>
list = typeSys.getSymbolsByScope(symbol.getScope()); for (int i = 0; i <
list.size(); i++) { if (!localVariables.contains(list.get(i))) {
localVariables.add(list.get(i)); } } for (int i = 0; i < localVariables.size();
i++) { if (localVariables.get(i) == symbol) { return i; } } return -1; }
小结

这一篇主要是根据上一篇的JVM字节码来对不同的操作提供不同的方法来去输出这些指令

欢迎Star!