目录
 * recap <https://www.cnblogs.com/nickchen121/p/10908602.html#recap> 
 * Perceptron <https://www.cnblogs.com/nickchen121/p/10908602.html#perceptron> 
 * Derivative <https://www.cnblogs.com/nickchen121/p/10908602.html#derivative> 
recap
 * 
\(y = XW + b\)
 * 
\(y = \sum{x_i}*w_i + b\)
Perceptron
 * \(x_i^0\) i表示当成第i个节点 
 * \(w_{ij}^0\) 表示当层的第i个节点,j表示下一个隐藏层的第j个节点 
 * \(\sigma\) 表示激活函数后的节点 
 * E表示error值 
 * t表示target值 
Derivative
 * \(E=\frac{1}{2}(O_0^1-t)^2\) import tensorflow as tf x = 
tf.random.normal([1, 3]) w = tf.ones([3, 1]) b = tf.ones([1]) y = 
tf.constant([1]) with tf.GradientTape() as tape: tape.watch([w, b]) prob = 
tf.sigmoid(x @ w + b) loss = tf.reduce_mean(tf.losses.MSE(y, prob)) grads = 
tape.gradient(loss, [w, b]) [<tf.Tensor: id=203, shape=(3, 1), dtype=float32, 
numpy= array([[-0.00047306], [-0.00288958], [-0.00280226]], dtype=float32)>, 
<tf.Tensor: id=201, shape=(1,), dtype=float32, numpy=array([-0.00275796], 
dtype=float32)>] grads[0] <tf.Tensor: id=203, shape=(3, 1), dtype=float32, 
numpy= array([[-0.00047306], [-0.00288958], [-0.00280226]], dtype=float32)> 
grads[1] <tf.Tensor: id=201, shape=(1,), dtype=float32, 
numpy=array([-0.00275796], dtype=float32)>
热门工具 换一换