参考此文:https://blog.csdn.net/qq_33039859/article/details/79901667
<https://blog.csdn.net/qq_33039859/article/details/79901667>

<>产生batch数据

输入data中每个样本可以有多个特征,和一个标签,最好都是numpy.array格式。
datas = [data1, data2, …, dataN ], labels = [label1, label2, …, labelN],
其中data[i] = [feature1, feature2,…featureM], 表示每个样本数据有M个特征。
输入我们方法的数据,all_data = [datas, labels] 。

<>代码实现

通过索引值来产生batch大小的数据,同时提供是否打乱顺序的选择,根据随机产生数据量范围类的索引值来打乱顺序。
import numpy as np def batch_generator(all_data , batch_size, shuffle=True):
""" :param all_data : all_data整个数据集 :param batch_size: batch_size表示每个batch的大小
:param shuffle: 每次是否打乱顺序 :return: """ all_data = [np.array(d) for d in all_data]
data_size= all_data[0].shape[0] print("data_size: ", data_size) if shuffle: p =
np.random.permutation(data_size) all_data = [d[p] for d in all_data]
batch_count= 0 while True: if batch_count * batch_size + batch_size > data_size:
batch_count= 0 if shuffle: p = np.random.permutation(data_size) all_data = [d[p
] for d in all_data] start = batch_count * batch_size end = start + batch_size
batch_count+= 1 yield [d[start: end] for d in all_data]
<>测试数据

样本数据x和标签y可以分开输入,也可以同时输入。
# 输入x表示有23个样本,每个样本有两个特征 # 输出y表示有23个标签,每个标签取值为0或1 x = np.random.random(size=[23,
2]) y = np.random.randint(2, size=[23,1]) batch_size = 5 batch_gen =
batch_generator([x, y], batch_size) for i in range(20): batch_x, batch_y = next(
batch_gen) print(batch_x, batch_y)