RNN:递归神经网络(RNN)是时间递归神经网络(recurrent neural network)和结构递归神经网络(recursive neural 
network)的总称。时间递归神经网络的神经元间连接构成矩阵,而结构递归神经网络结构更加复杂。
【基本描述】
1、递归神经网络RNN主要用来处理序列有关数据,比如时间序列、文本序列等。序列是被排成一列的对象,RNN处理序列对象之所以存在优势,是因为RNN神经元中充分考虑了序列输入中前段时间一定的权重。
2、RNN网络结构:和传统神经网络一样,RNN网络结构分为输入层、隐藏层和输出层
RNN网络特别之处在于如下:SYNAPSE_h会连接当前t时刻的隐藏层神经元,同时也连接着t-1时刻的神经元结构,所以RNN神经网络中的参数主要有SYNAPSE_O对应的U矩阵,SYNAPSE_h对应的W矩阵和SYNAPSE_1对应的V矩阵,如下图U是3*3矩阵,W是4*4矩阵,V是4*2矩阵。
3、公式推导_前向传播
前向传播相对简单,其主要涉及的公式见下:
4、公式推导_反向传播
 
 
【实例】
例:用RNN来实现一个八位的二进制数加法运算。
import copy, numpy as np np.random.seed(0) # compute sigmoid nonlinearity def 
sigmoid(x): output = 1 / (1 + np.exp(-x)) return output # convert output of 
sigmoid function to its derivative def sigmoid_output_to_derivative(output): 
return output * (1 - output) # training dataset generation int2binary = {} 
binary_dim = 8 largest_number = pow(2, binary_dim) binary = np.unpackbits( 
np.array([range(largest_number)], dtype=np.uint8).T, axis=1) for i in 
range(largest_number): int2binary[i] = binary[i] # input variables alpha = 0.1 
input_dim = 2 hidden_dim = 16 output_dim = 1 # initialize neural network 
weights synapse_0 = 2 * np.random.random((input_dim, hidden_dim)) - 1 synapse_1 
= 2 * np.random.random((hidden_dim, output_dim)) - 1 synapse_h = 2 * 
np.random.random((hidden_dim, hidden_dim)) - 1 synapse_0_update = 
np.zeros_like(synapse_0) synapse_1_update = np.zeros_like(synapse_1) 
synapse_h_update = np.zeros_like(synapse_h) # training logic for j in 
range(10000): # generate a simple addition problem (a + b = c) a_int = 
np.random.randint(largest_number / 2) # int version a = int2binary[a_int] # 
binary encoding b_int = np.random.randint(largest_number / 2) # int version b = 
int2binary[b_int] # binary encoding # true answer c_int = a_int + b_int c = 
int2binary[c_int] # where we'll store our best guess (binary encoded) d = 
np.zeros_like(c) overallError = 0 layer_2_deltas = list() layer_1_values = 
list() layer_1_values.append(np.zeros(hidden_dim)) # moving along the positions 
in the binary encoding for position in range(binary_dim): # generate input and 
output X = np.array([[a[binary_dim - position - 1], b[binary_dim - position - 
1]]]) y = np.array([[c[binary_dim - position - 1]]]).T # hidden layer (input ~+ 
prev_hidden) layer_1 = sigmoid(np.dot(X, synapse_0) + 
np.dot(layer_1_values[-1], synapse_h)) # output layer (new binary 
representation) layer_2 = sigmoid(np.dot(layer_1, synapse_1)) # did we miss?... 
if so, by how much? layer_2_error = y - layer_2 
layer_2_deltas.append((layer_2_error) * sigmoid_output_to_derivative(layer_2)) 
overallError += np.abs(layer_2_error[0]) # decode estimate so we can print it 
out d[binary_dim - position - 1] = np.round(layer_2[0][0]) # store hidden layer 
so we can use it in the next timestep 
layer_1_values.append(copy.deepcopy(layer_1)) future_layer_1_delta = 
np.zeros(hidden_dim) for position in range(binary_dim): X = 
np.array([[a[position], b[position]]]) layer_1 = layer_1_values[-position - 1] 
prev_layer_1 = layer_1_values[-position - 2] # error at output layer 
layer_2_delta = layer_2_deltas[-position - 1] # error at hidden layer 
layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot( 
synapse_1.T)) * sigmoid_output_to_derivative(layer_1) # let's update all our 
weights so we can try again synapse_1_update += 
np.atleast_2d(layer_1).T.dot(layer_2_delta) synapse_h_update += 
np.atleast_2d(prev_layer_1).T.dot(layer_1_delta) synapse_0_update += 
X.T.dot(layer_1_delta) future_layer_1_delta = layer_1_delta synapse_0 += 
synapse_0_update * alpha synapse_1 += synapse_1_update * alpha synapse_h += 
synapse_h_update * alpha synapse_0_update *= 0 synapse_1_update *= 0 
synapse_h_update *= 0 # print out progress if (j % 1000 == 0): print("Error:" + 
str(overallError)) print("Pred:" + str(d)) print("True:" + str(c)) out = 0 for 
index, x in enumerate(reversed(d)): out += x * pow(2, index) print(str(a_int) + 
" + " + str(b_int) + " = " + str(out)) print("------------") 
以上源码经过几次得到就能得到很好的效果,详细的执行逻辑可以跟踪代码进行查看!
【总结】
时间递归神经网络可以描述动态时间行为,但是简单递归神经网络无法处理随着递归,梯度爆炸或者梯度消失的问题,并且难以捕捉长期时间关联;有效的处理方法是忘掉错误的信息,记住正确的信息。LSTM能够比较好的解决这个问题。
 
热门工具 换一换