Go语言不是一门面向对象的语言,没有对象和继承,也没有面向对象的多态、重写相关特性。

Go所拥有的是数据结构,它可以关联方法。Go也支持简单但高效的组合(Composition),请搜索面向对象和组合。

虽然Go不支持面向对象,但Go通过定义数据结构的方式,也能实现与Class相似的功能。



一个简单的例子,定义一个Animal数据结构:
type Animal struct { name string speak string }
这就像是定义了一个class,有自己的属性。



在稍后,将会介绍如何向这个数据结构中添加方法,就像为类定义方法一样。不过现在,先简单介绍下数据结构。

数据结构的定义和初始化

除了int、string等内置的数据类型,我们可以定义structure来自定义数据类型。

创建数据结构最简单的方式:
bm_horse := Animal{ name:"baima", speak:"neigh", }
注意,上面最后一个逗号","不能省略,Go会报错,这个逗号有助于我们去扩展这个结构,所以习惯后,这是一个很好的特性。

上面bm_horse := Animal{}中,Animal就像是一个类,这个声明和赋值的操作就像创建了一个Animal类的实例,也就是对象,其中对象名为
bm_horse
,它是这个实例的唯一标识符。这个对象具有属性name和speak,它们是每个对象所拥有的key,且它们都有自己的值。从面向对象的角度上考虑,这其实很容易理解。

还可以根据Animal数据结构再创建另外一个实例:
hm_horse := Animal{ name:"heima", speak:"neigh", }
bm_horse和hm_horse都是Animal的实例,根据Animal数据结构创建而来,这两个实例都拥有自己的数据结构。如下图:



从另一种角度上看,bm_horse这个名称其实是这个数据结构的一个引用。再进一步考虑,其实面向对象的类和对象也是一种数据结构,每一个对象的名称(即
bm_horse)都是对这种数据结构的引用。关于这一点,在后面介绍指针的时候将非常有助于理解。

以下是两外两种有效的数据结构定义方式:
// 定义空数据结构 bm_horse := Animal{} // 或者,先定义一部分,再赋值 bm_horse := Animal
{name:"baima"} bm_horse.speak = "neigh"
此外,还可以省略数据结构中的key部分(也就是属性的名称)直接为数据结构中的属性赋值,只不过这时赋的值必须和key的顺序对应。
bm_horse := Animal{"baima","neigh"}
在数据结构的属性数量较少的时候,这种赋值方式也是不错的,但属性数量多了,不建议如此赋值,因为很容易混乱。

访问数据结构的属性

要访问一个数据结构中的属性,如下:
package main import ("fmt") func main(){ type Animal struct { name string
speak string } bm_horse := Animal{"baima","neigh"}
fmt.Println("name:",bm_horse.name) fmt.Println("speak:",bm_horse.speak) }
前面说过,Animal是一个数据结构的模板(就像类一样),不是实例,bm_horse
才是具体的实例,有自己的数据结构,所以,要访问自己数据结构中的数据,可以通过自己的名称来访问自己的属性:
bm_horse.name bm_horse.speak
指针

bm_horse := Animal{}
表示返回一个数据结构给bm_horse,bm_horse指向这个数据结构,也可以说bm_horse是这个数据结构的引用。

除此,还有另一种赋值方式,比较下两种赋值方式:
bm_horse := Animal{"baima","neigh"} ref_bm_horse := &Animal{"baima","neigh"}
这两种赋值方式,有何不同?

:=操作符都声明左边的变量,并赋值变量。赋值的内容基本神似:

* 第一种将整个数据结构赋值给变量bm_horse,bm_horse从此变成Animal的实例;

* 第二种使用了一个特殊符号&在数据结构前面,它表示返回这个数据结构的引用,也就是这个数据结构的地址,所以ref_bm_horse也指向这个数据结构。
那bm_horse和ref_bm_horse都指向这个数据结构,有什么区别?

实际上,赋值给bm_horse的是Animal实例的地址,赋值给ref_bm_horse
是一个中间的指针,这个指针里保存了Animal实例的地址。它们的关系相当于:
bm_horse -> Animal{} ref_bm_horse -> Pointer -> Animal{}
其中Pointer在内存中占用一个长度为一个机器字长的单独数据块,64位机器上一个机器字长是8字节,所以赋值给ref_bm_horse
的这个8字节长度的指针地址,这个指针地址再指向Animal{},而bm_horse则是直接指向Animal{}。

如果还不明白,我打算用perl语言的语法来解释它们的区别,因为C和Go的指针太过"晦涩"。

perl中的引用

在Perl中,一个hash结构使用%符号来表示,例如:
%Animal = ( name => "baima", speak => "neigh", );
这里的"Animal"表示的是这个hash结构的名称,然后通过%+NAME
的方式来引用这个hash数据结构。其实hash结构的名称"Animal"就是这个hash结构的一个引用,表示指向这个hash结构,只不过这个Animal
是创建hash结构是就指定好的已命名的引用。

perl中还支持显式地创建一个引用。例如:
$ref_myhash = \%Animal;
%Animal表示的是hash数据结构,加上\表示这个数据结构的一个引用,这个引用指向这个hash数据结构。perl中的引用是一个变量,所以使用
$ref_myhash表示。



也就是说,hash结构的名称Animal和$ref_myhash是完全等价的,都是hash结构的引用,也就是指向这个数据结构,也就是指针。所以,%Animal
能表示取hash结构的属性,%$ref_myhash也能表示取hash结构的属性,这种从引用取回hash数据结构的方式称为"解除引用"。

另外,$ref_myhash是一个变量类型,而%Animal是一个hash类型。

引用变量可以赋值给另一个引用变量,这样两个引用都将指向同一个数据结构:
$ref_myhash1 = $ref_myhash;
现在,$ref_myhash、$ref_myhash1和Animal都指向同一个数据结构。

Go中的指针:引用

总结下上面perl相关的代码:
%Animal = ( name => "baima", speak => "neigh", ); $ref_myhash = \%Animal;
$ref_myhash1 = $ref_myhash;
%Animal是hash结构,Animal、$ref_myhash、$ref_myhash1都是这个hash结构的引用。

回到Go语言的数据结构:
bm_horse := Animal{} hm_horse := &Animal{}
这里的Animal{}是一个数据结构,相当于perl中的hash数据结构:
( name => "baima", speak => "neigh", )
bm_horse是数据结构的直接赋值对象,它直接表示数据结构,所以它等价于前面perl中的%Animal。而hm_horse是Animal{}
数据结构的引用,它等价于perl中的Animal、$ref_myhash、$ref_myhash1。


之所以Go中的指针不好理解,就是因为数据结构bm_horse和引用hm_horse都没有任何额外的标注,看上去都像是一种变量。但其实它们是两种不同的数据类型:一种是数据结构,一种是引用。

Go中的星号"*"

星号有两种用法:

* x *int表示变量x是一个引用,这个引用指向的目标数据是int类型。更通用的形式是x *TYPE

* *x表示x是一个引用,*x表示解除这个引用,取回x所指向的数据结构,也就是说这是
一个数据结构,只不过这个数据结构可能是内置数据类型,也可能是自定义的数据结构
x *int的x是一个指向int类型的引用,而&y返回的也是一个引用,所以&y的y如果是int类型的数据,&y可以赋值给x *int的x。

注意,x的数据类型是*int,不是int,虽然x所指向的是数据类型是int。就像前面perl中的引用只是一个变量,而其指向的却是一个hash数据结构一样。

*x代表的是数据结构自身,所以如果为其赋值(如*x = 2),则新赋的值将直接保存到x指向的数据中。

例如:
package main import ("fmt") func main(){ var a *int c := 2 a = &c d := *a
fmt.Println(*a) // 输出2 fmt.Println(d) // 输出2 }
var a *int定义了一个指向int类型的数据结构的引用。a = &c中,因为&c
返回的是一个引用,指向的是数据结构c,c是int类型的数据结构,将其赋值给a,所以a也指向c这个数据结构,也就是说*a的值将等于2。所以d := *a
赋值后,d自身是一个int类型的数据结构,其值为2。

Go函数参数传值

Go函数给参数传递值的时候是以复制的方式进行的。

因为复制传值的方式,如果函数的参数是一个数据结构,将直接复制整个数据结构的副本传递给函数,这有两个问题:

* 函数内部无法修改传递给函数的原始数据结构,它修改的只是原始数据结构拷贝后的副本

* 如果传递的原始数据结构很大,完整地复制出一个副本开销并不小
例如,第一个问题:
package main import ("fmt") type Animal struct { name string weight int } func
main(){ bm_horse := Animal{ name: "baima", weight: 60, } add(bm_horse)
fmt.Println(bm_horse.weight) } func add(a Animal){ a.weight += 10 }
上面的输出结果仍然为60。add函数用于修改Animal的实例数据结构中的weight属性。当执行add(bm_horse)的时候,bm_horse
传递给add()函数,但并不是直接传递给add()函数,而是复制一份bm_horse的副本赋值给add函数的参数a,所以add()中修改的a.weight
的属性是bm_horse的副本,而不是直接修改的bm_horse,所以上面的输出结果仍然为60。

为了修改bm_horse所在的数据结构的值,需要使用引用(指针)的方式传值。

只需修改两个地方即可:
package main import ("fmt") type Animal struct { name string weight int } func
main(){ bm_horse := &Animal{ name: "baima", weight: 60, } add(bm_horse)
fmt.Println(bm_horse.weight) } func add(a *Animal){ a.weight += 10 }
为了修改传递给函数参数的数据结构,这个参数必须是直接指向这个数据结构的。所以使用add(a *Animal)
,既然a是一个Animal数据结构的一个实例的引用,所以调用add()的时候,传递给add()中的参数必须是一个Animal数据结构的引用,所以bm_horse
的定义语句中使用&符号。

当调用到add(bm_horse)的时候,因为bm_horse
是一个引用,所以赋值给函数参数a时,复制的是这个数据结构的引用,使得add能直接修改其外部的数据结构属性。

大多数时候,传递给函数的数据结构都是它们的引用,但极少数时候也有需求直接传递数据结构。

方法:属于数据结构的函数

可以为数据结构定义属于自己的函数。
package main import ("fmt") type Animal struct { name string weight int } func
(a *Animal) add() { a.weight += 10 } func main() { bm_horse :=
&Animal{"baima",70} bm_horse.add() fmt.Println(bm_horse.weight) // 输出80 }
上面的add()函数定义方式func (a *Animal) add(){}
,它所表示的就是定义于数据结构Animal上的函数,就像类的实例方法一样,只要是属于这个数据结构的实例,都能直接调用这个函数,正如bm_horse.add()
一样。

构造器

面向对象中有构造器(也称为构造方法),可以根据类构造出类的实例:对象。


Go虽然不支持面向对象,没有构造器的概念,但也具有构造器的功能,毕竟构造器只是一个方法而已。只要一个函数能够根据数据结构返回这个数据结构的一个实例对象,就可以称之为"构造器"。

例如,以下是Animal数据结构的一个构造函数:
func newAnimal(n string,w int) *Animal { return &Animal{ name: n, weight: w, }
}
以下返回的是非引用类型的数据结构:
func newAnimal(n string,w int) Animal { return Animal{ name: n, weigth: w, } }
一般上面的方法类型称为工厂方法,就像工厂一样根据模板不断生成产品。但对于创建数据结构的实例来说,一般还是会采用内置的new()方式。

new函数

尽管Go没有构造器,但Go还有一个内置的new()函数用于为一个数据结构分配内存。其中new(x)等价于&x{},以下两语句等价:
bm_horse := new(Animal) bm_horse := &Animal{}
使用哪种方式取决于自己。但如果要进行初始化赋值,一般采用第二种方法,可读性更强:
# 第一种方式 bm_horse := new(Animal) bm_horse.name = "baima" bm_horse.weight = 60 #
第二种方式 bm_horse := &Animal{ name: "baima", weight: 60, }
扩展数据结构的字段


在前面出现的数据结构中的字段数据类型都是简简单单的内置类型:string、int。但数据结构中的字段可以更复杂,例如可以是map、array等,还可以是自定义的数据类型(数据结构)。

例如,将一个指向同类型数据结构的字段添加到数据结构中:
type Animal struct { name string weight int father *Animal }
其中在此处的*Animal所表示的数据结构实例很可能是其它的Animal实例对象。

上面定义了father,还可以定义son,sister等等。

例如:
bm_horse := &Animal{ name: "baima", weight: 60, father: &Animal{ name:
"hongma", weight: 80, father: nil, }, }
composition

Go语言支持Composition(组合),它表示的是在一个数据结构中嵌套另一个数据结构的行为。
package main import ( "fmt" ) type Animal struct { name string weight int }
type Horse struct { *Animal // 注意此行 speak string } func (a *Animal) hello() {
fmt.Println(a.name) fmt.Println(a.weight) //fmt.Println(a.speak) } func main()
{ bm_horse := &Horse{ Animal: &Animal{ // 注意此行 name: "baima", weight: 60, },
speak: "neigh", } bm_horse.hello() }
上面的Horse数据结构中包含了一行*Animal
,表示Animal的数据结构插入到Horse的结构中,这就像是一种面向对象的类继承。注意,没有给该字段显式命名,但可以隐式地访问Horse组合结构中的字段和函数。

另外,在构建Horse实例的时候,必须显式为其指定字段名(尽管数据结构中并没有指定其名称),且字段的名称必须和数据结构的名称完全相同。

然后调用属于Animal数据结构的hello方法,它只能访问Animal中的属性,所以无法访问speak属性。

很多人认为这种代码共享的方式比面向对象的继承更加健壮。

Go中的重载overload

例如,将上面属于Animal数据结构的hello函数重载为属于Horse数据结构的hello函数:
package main import ( "fmt" ) type Animal struct { name string weight int }
type Horse struct { *Animal // 注意此行 speak string } func (h *Horse) hello() {
fmt.Println(h.name) fmt.Println(h.weight) fmt.Println(h.speak) } func main() {
bm_horse := &Horse{ Animal: &Animal{ // 注意此行 name: "baima", weight: 60, },
speak: "neigh", } bm_horse.hello() }

友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:ixiaoyang8@qq.com
QQ群:637538335
关注微信