pytorch的模型和参数是分开的,可以分别保存或加载模型和参数。
pytorch有两种模型保存方式:
一、保存整个神经网络的的结构信息和模型参数信息,save的对象是网络net
二、只保存神经网络的训练模型参数,save的对象是net.state_dict()
对应两种保存模型的方式,pytorch也有两种加载模型的方式。对应第一种保存方式,加载模型时通过torch.load('.pth')直接初始化新的神经网络对象;对应第二种保存方式,需要首先导入对应的网络,再通过net.load_state_dict(torch.load('.pth'))完成模型参数的加载。
在网络比较大的时候,第一种方法会花费较多的时间。
1. 直接加载模型和参数
加载别人训练好的模型:
# 保存和加载整个模型 torch.save(model_object, 'resnet.pth') model =
torch.load('resnet.pth')
2. 分别加载网络的结构和参数
# 将my_resnet模型储存为my_resnet.pth torch.save(my_resnet.state_dict(),
"my_resnet.pth") # 加载resnet,模型存放在my_resnet.pth
my_resnet.load_state_dict(torch.load("my_resnet.pth"))
其中my_resnet是my_resnet.pth对应的网络结构。
3. pytorch预训练模型
1)加载预训练模型和参数
resnet18 = models.resnet18(pretrained=True)
这里是直接调用pytorch中的常用模型
# PyTorch中的torchvision里有很多常用的模型,可以直接调用: import torchvision.models as models
resnet101 = models.resnet18() alexnet = models.alexnet() squeezenet =
models.squeezenet1_0() densenet = models.densenet_161()
2)只加载模型,不加载预训练参数
# 导入模型结构 resnet18 = models.resnet18(pretrained=False) # 加载预先下载好的预训练参数到resnet18
resnet18.load_state_dict(torch.load('resnet18-5c106cde.pth'))
3)加载部分预训练模型
resnet152 = models.resnet152(pretrained=True) pretrained_dict =
resnet152.state_dict() """加载torchvision中的预训练模型和参数后通过state_dict()方法提取参数
也可以直接从官方model_zoo下载: pretrained_dict =
model_zoo.load_url(model_urls['resnet152'])""" model_dict = model.state_dict()
# 将pretrained_dict里不属于model_dict的键剔除掉 pretrained_dict = {k: v for k, v in
pretrained_dict.items() if k in model_dict} # 更新现有的model_dict
model_dict.update(pretrained_dict) # 加载我们真正需要的state_dict
model.load_state_dict(model_dict)
参考资料:
* CSDN博客:PyTorch预训练 <https://blog.csdn.net/AMDS123/article/details/70144935>
,作者:算法学习者 <https://blog.csdn.net/AMDS123>
* CSDN博客:pytorch使用总结 <https://blog.csdn.net/tfygg/article/details/70227388>
,作者:飞yan <https://blog.csdn.net/tfygg>
* 博客园:pytorch预训练模型 <https://www.cnblogs.com/zhanghouyu/p/8053824.html>,作者:
zhanghouyu <http://www.cnblogs.com/zhanghouyu/>
热门工具 换一换