本文主要采用CNN,RNN对时序数据进行二分类

CNN处理时序数据的二分类
model = Sequential() model.add(Conv1D(128, 3, padding='same',
input_shape=(max_lenth, max_features))) model.add(BatchNormalization())
model.add(Activation('relu')) model.add(Conv1D(256, 3))
model.add(BatchNormalization()) model.add(Activation('relu'))
model.add(Conv1D(128, 3)) model.add(BatchNormalization())
model.add(Activation('relu')) model.add(GlobalAveragePooling1D()) #时序的时间维度上全局池化
model.add(Dropout(0.5)) model.add(Dense(1)) model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=[metrics.binary_crossentropy])


双层RNN处理时序数据的二分类
import numpy as np import tensorflow as tf from keras.models import Sequential
from keras.layers import Dense, Dropout from keras.layers import GRU import
keras from keras import regularizers from keras.callbacks import EarlyStopping
from sklearn.metrics import roc_auc_score from sklearn.cross_validation import
StratifiedKFold from keras import backend as K import my_callbacks from
keras.layers.normalization import BatchNormalization import
keras.backend.tensorflow_backend as KTF max_lenth = 23 max_features = 12
training_iters = 2000 train_batch_size = 800 test_batch_size = 800
n_hidden_units = 64 lr = 0.0003 cb = [ my_callbacks.RocAucMetricCallback(), #
include it before EarlyStopping!
EarlyStopping(monitor='roc_auc_val',patience=200, verbose=2,mode='max') ] model
= Sequential() model.add(keras.layers.core.Masking(mask_value=0.,
input_shape=(max_lenth, max_features)))
model.add(GRU(units=n_hidden_units,activation='selu',kernel_initializer='orthogonal',
recurrent_initializer='orthogonal', bias_initializer='zeros',
kernel_regularizer=regularizers.l2(0.01),
recurrent_regularizer=regularizers.l2(0.01), bias_regularizer=None,
activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1,
return_sequences=True,#多层时需设置为true return_state=False, go_backwards=False,
stateful=False, unroll=False)) #input_shape=(max_lenth, max_features),
model.add(GRU(units=n_hidden_units,activation='selu',kernel_initializer='orthogonal',
recurrent_initializer='orthogonal', bias_initializer='zeros',
kernel_regularizer=regularizers.l2(0.01),
recurrent_regularizer=regularizers.l2(0.01), bias_regularizer=None,
activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1,
return_sequences=False, return_state=False, go_backwards=False, stateful=False,
unroll=False)) #input_shape=(max_lenth, max_features), model.add(Dropout(0.5))
model.add(Dense(1)) model.add(BatchNormalization())
model.add(keras.layers.core.Activation('sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=[metrics.binary_crossentropy]) model.fit(x_train, y_train,
batch_size=train_batch_size, epochs=training_iters, verbose=2,
callbacks=cb,validation_split=0.2, shuffle=True, class_weight=class_weight,
sample_weight=None, initial_epoch=0) pred_y = model.predict(x_test,
batch_size=test_batch_size) score = roc_auc_score(y_test,pred_y)
加入attention机制的 双向RNN(attention即对所有时刻的输出乘上对应的权重相加作为最终输出)
from keras import backend as K from keras.layers import Layer from keras
import initializers, regularizers, constraints def dot_product(x, kernel): """
Wrapper for dot product operation, in order to be compatible with both Theano
and Tensorflow Args: x (): input kernel (): weights Returns: """ if K.backend()
== 'tensorflow': return K.squeeze(K.dot(x, K.expand_dims(kernel)), axis=-1)
else: return K.dot(x, kernel) class AttentionWithContext(Layer): """ Attention
operation, with a context/query vector, for temporal data. Supports Masking.
Follows the work of Yang et al.
[https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf] "Hierarchical Attention
Networks for Document Classification" by using a context vector to assist the
attention # Input shape 3D tensor with shape: `(samples, steps, features)`. #
Output shape 2D tensor with shape: `(samples, features)`. How to use: Just put
it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True. The
dimensions are inferred based on the output shape of the RNN. Note: The layer
has been tested with Keras 2.0.6 Example: model.add(LSTM(64,
return_sequences=True)) model.add(AttentionWithContext()) # next add a Dense
layer (for classification/regression) or whatever... """ def __init__(self,
W_regularizer=None, u_regularizer=None, b_regularizer=None, W_constraint=None,
u_constraint=None, b_constraint=None, bias=True, **kwargs):
self.supports_masking = True self.init = initializers.get('glorot_uniform')
self.W_regularizer = regularizers.get(W_regularizer) self.u_regularizer =
regularizers.get(u_regularizer) self.b_regularizer =
regularizers.get(b_regularizer) self.W_constraint =
constraints.get(W_constraint) self.u_constraint = constraints.get(u_constraint)
self.b_constraint = constraints.get(b_constraint) self.bias = bias
super(AttentionWithContext, self).__init__(**kwargs) def build(self,
input_shape): assert len(input_shape) == 3 self.W =
self.add_weight((input_shape[-1], input_shape[-1],), initializer=self.init,
name='{}_W'.format(self.name), regularizer=self.W_regularizer,
constraint=self.W_constraint) if self.bias: self.b =
self.add_weight((input_shape[-1],), initializer='zero',
name='{}_b'.format(self.name), regularizer=self.b_regularizer,
constraint=self.b_constraint) self.u = self.add_weight((input_shape[-1],),
initializer=self.init, name='{}_u'.format(self.name),
regularizer=self.u_regularizer, constraint=self.u_constraint)
super(AttentionWithContext, self).build(input_shape) def compute_mask(self,
input, input_mask=None): # do not pass the mask to the next layers return None
def call(self, x, mask=None): uit = dot_product(x, self.W) if self.bias: uit +=
self.b uit = K.tanh(uit) ait = dot_product(uit, self.u) a = K.exp(ait) # apply
mask after the exp. will be re-normalized next if mask is not None: # Cast the
mask to floatX to avoid float64 upcasting in theano a *= K.cast(mask,
K.floatx()) # in some cases especially in the early stages of training the sum
may be almost zero # and this results in NaN's. A workaround is to add a very
small positive number ε to the sum. # a /= K.cast(K.sum(a, axis=1,
keepdims=True), K.floatx()) a /= K.cast(K.sum(a, axis=1, keepdims=True) +
K.epsilon(), K.floatx()) a = K.expand_dims(a) weighted_input = x * a return
K.sum(weighted_input, axis=1) def compute_output_shape(self, input_shape):
return input_shape[0], input_shape[-1]model = Sequential()
model.add(keras.layers.core.Masking(mask_value=0., input_shape=(max_lenth,
max_features)))
model.add(Bidirectional(GRU(units=n_hidden_units,activation='selu',kernel_initializer='orthogonal',
recurrent_initializer='orthogonal', bias_initializer='zeros',
kernel_regularizer=regularizers.l2(0.01),
recurrent_regularizer=regularizers.l2(0.01), bias_regularizer=None,
activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1,
return_sequences=True,#多层时需设置为true return_state=False, go_backwards=False,
stateful=False, unroll=False),merge_mode='concat')) #input_shape=(max_lenth,
max_features),
model.add(Bidirectional(GRU(units=n_hidden_units,activation='selu',kernel_initializer='orthogonal',
recurrent_initializer='orthogonal', bias_initializer='zeros',
kernel_regularizer=regularizers.l2(0.01),
recurrent_regularizer=regularizers.l2(0.01), bias_regularizer=None,
activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1,
return_sequences=True, return_state=False, go_backwards=False, stateful=False,
unroll=False),merge_mode='concat')) #input_shape=(max_lenth, max_features),
model.add(Dropout(0.5)) model.add(AttentionWithContext()) model.add(Dense(1))
model.add(BatchNormalization())
model.add(keras.layers.core.Activation('sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=[metrics.binary_crossentropy])
CNN-RNN融合
class NonMasking(Layer): def __init__(self, **kwargs): self.supports_masking =
True super(NonMasking, self).__init__(**kwargs) def build(self, input_shape):
input_shape = input_shape def compute_mask(self, input, input_mask=None): # do
not pass the mask to the next layers return None def call(self, x, mask=None):
return x def get_output_shape_for(self, input_shape): return input_shape
model_left = Sequential()
model_left.add(keras.layers.core.Masking(mask_value=0., input_shape=(max_lenth,
max_features))) #解决不同长度的序列问题
model_left.add(GRU(units=left_hidden_units,activation='relu',kernel_initializer='orthogonal',
recurrent_initializer='orthogonal', bias_initializer='zeros',
kernel_regularizer=regularizers.l2(0.01),
recurrent_regularizer=regularizers.l2(0.01), bias_regularizer=None,
activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1,
return_sequences=True,#多层时需设置为true return_state=False, go_backwards=False,
stateful=False, unroll=False))
model_left.add(GRU(units=left_hidden_units,activation='relu',kernel_initializer='orthogonal',
recurrent_initializer='orthogonal', bias_initializer='zeros',
kernel_regularizer=regularizers.l2(0.01),
recurrent_regularizer=regularizers.l2(0.01), bias_regularizer=None,
activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1,
return_sequences=True, return_state=False, go_backwards=False, stateful=False,
unroll=False)) model_left.add(NonMasking()) #Flatten()不支持masking,此处用于unmask
model_left.add(Flatten()) ## FCN model_right = Sequential()
model_right.add(Conv1D(128, 3, padding='same', input_shape=(max_lenth,
max_features))) model_right.add(BatchNormalization())
model_right.add(Activation('relu')) model_right.add(Conv1D(256, 3))
model_right.add(BatchNormalization()) model_right.add(Activation('relu'))
model_right.add(Conv1D(128, 3)) model_right.add(BatchNormalization())
model_right.add(Activation('relu')) model_right.add(GlobalAveragePooling1D())
model_right.add(Reshape((1,1,-1))) model_right.add(Flatten()) model =
Sequential() model.add(Merge([model_left,model_right], mode='concat'))
model.add(Dense(128)) model.add(Dropout(0.5)) model.add(Dense(1))
model.add(BatchNormalization()) model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy']) model.fit([left_x_train,right_x_train], y_train,
batch_size=train_batch_size, epochs=training_iters, verbose=2,
callbacks=[cb],validation_split=0.2, shuffle=True, class_weight=None,
sample_weight=None, initial_epoch=0) pred_y =
model.predict([left_x_test,right_x_test], batch_size=test_batch_size) score =
roc_auc_score(y_test,pred_y)






友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:ixiaoyang8@qq.com
QQ群:637538335
关注微信