本篇博客主要介绍几种加速神经网络训练的方法。


我们知道,在训练样本非常多的情况下,如果一次性把所有的样本送入神经网络,每迭代一次更新网络参数,这样的效率是很低的。为什么?因为梯度下降法参数更新的公式一般为:





如果使用批量梯度下降法(一次性使用全部样本调整参数),那么上式中求和那项的计算会非常耗时,因为样本总量m是一个很大的数字。那么由此就有了第一种加速方法:随机梯度下降法,简称SGD。
它的思想是,将样本数据挨个送入网络,每次使用一个样本就更新一次参数,这样可以极快地收敛到最优值,但会产生较大的波动。还有一种是小批量梯度下降法,它的思想是,将数据拆分成一小批一小批的,分批送入神经网络,每送一批就更新一次网络参数。实验证明,该方法相比前两种梯度下降法,集成了两者的优点,是较好的一种加速方法。


第二类加速方法是加动量项的方法。我们知道,在更新网络参数时,如果前几次都是朝着一个方向更新,那么下一次就有很大的可能也是朝着那个方向更新,那么我们可以利用上一次的方向作为我这次更新的依据。打个比方,我想找到一座山的谷底,当我从山上往山下走,如果第一步是向下,第二步是向下,那么我第三步就可以走得快一些。从而以这种方式来加速网络训练。不仅如此,这种方法还可以从一定程度上避免网络陷入到局部极小值。





当出现以上情况时,网络走到A点,发现梯度已经为零,很可能不再继续往下走,直接以为A点就是最小值。当我们加上动量项,就可以利用前一时刻的动力,使其冲过A点,继续往下走。

第三类加速方法是AdamGrad,该方法自动地调整学习率的大小,该方法下的learning
rate会根据历史的梯度值动态地改变学习率的大小。它需要计算更新到该t轮,参数的历史梯度的平方和。

第四种加速方法是RMSprop,它是一种自适应学习率算法,它与AdamGrad方法的不同之处在于,它只计算更新到该t轮,参数的历史梯度的平均值。


第五种加速方法是Adam,它也是一种自适应学习率调整算法,同时也是最广泛的一种方法。它利用的是梯度的一阶矩估计和二阶矩估计。该方法调整的学习率较为平稳,且预估结果较为准确。

当然,还有很多很多种加速神经网络训练的方法,以上只是较为常见的几种。




在PyTorch深度学习框架中,实现的优化器覆盖了Adadelta、Adagrad、Adam、Adamax、RMSprop、Rprop等等。

为了直观地比较各个优化器的性能,我借助PyTorch框架用一个神经网络来解决一个二次函数的拟合问题。
import torch import torch.utils.data as Data import torch.nn.functional as F
from torch.autograd import Variable import matplotlib.pyplot as plt
torch.manual_seed(1) #设置种子,使得结果可再现 LR = 0.01 #学习率learning rate BATCH_SIZE = 32
#一个batch的大小 EPOCH = 12 #迭代轮数 #制造数据 x =
torch.unsqueeze(torch.linspace(-1,1,1000),dim=1) #产生[-1,1]之间的100个值 y = x.pow(2)
+ 0.1*torch.normal(torch.zeros(x.size())) #y=x^2,再加上0.1倍的正态分布的扰动
plt.scatter(x.numpy(),y.numpy()) plt.show() #展示样本数据 #批训练 torch_dataset =
Data.TensorDataset(data_tensor=x,target_tensor=y) loader =
Data.DataLoader(dataset=torch_dataset,batch_size=BATCH_SIZE,shuffle=True,num_workers=2,)
#shuffle=True表示随机抽取,num_workers表示线程数量 class Net(torch.nn.Module): def
__init__(self): super(Net,self).__init__() self.hidden = torch.nn.Linear(1,20)
#隐层20个神经元 self.predict = torch.nn.Linear(20,1) #输出层1个神经元,表示预测的结果 def
forward(self,x): x = F.relu(self.hidden(x)) #隐层设置relu激活函数 x = self.predict(x)
#输出层直接线性输出 return x #为每个优化器创建一个Net net_SGD = Net() net_Momentum = Net()
net_RMSprop = Net() net_Adam = Net() nets =
[net_SGD,net_Momentum,net_RMSprop,net_Adam] #将其放入一个列表中 opt_SGD =
torch.optim.SGD(net_SGD.parameters(),lr=LR) opt_Monentum =
torch.optim.SGD(net_Momentum.parameters(),lr=LR,momentum=0.8) opt_RMSprop =
torch.optim.RMSprop(net_RMSprop.parameters(),lr=LR,alpha=0.9) opt_Adam =
torch.optim.Adam(net_Adam.parameters(),lr=LR,betas=(0.9,0.99)) optimizers =
[opt_SGD,opt_Monentum,opt_RMSprop,opt_Adam] #定义误差函数 loss_func =
torch.nn.MSELoss() losses_his = [[],[],[],[]] for epoch in range(EPOCH):
print('Epoch:',epoch) for step,(batch_x,batch_y) in enumerate(loader): b_x =
Variable(batch_x) b_y = Variable(batch_y) for net,opt,l_his in
zip(nets,optimizers,losses_his): output = net(b_x) loss = loss_func(output,b_y)
opt.zero_grad() #为下一次计算梯度清零 loss.backward() #误差反向传播 opt.step() #运用梯度
l_his.append(loss.data[0]) labels = ['SGD','Momentum','RMSprop','Adam'] for
i,l_his in enumerate(losses_his): plt.plot(l_his,label=labels[i])
plt.legend(loc='best') #图例放在最佳位置 plt.xlabel('Steps') plt.ylabel('Loss')
plt.ylim((0,0.2)) plt.show()
原始的训练数据可视化:




不同Optimizer优化器性能比较的结果:




结果分析:从上图中,我们可以看出,SGD明显波动较大,Adam方法效果最优。当然每种优化器的性能还与训练数据的分布有很大的关系。



友情链接
ioDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:ixiaoyang8@qq.com
QQ群:637538335
关注微信