1.代码地址:https://github.com/balancap/SSD-Tensorflow,下载该代码到本地
2.解压ssd_300_vgg.ckpt.zip 到checkpoint文件夹下
3.测试一下看看,在notebooks中创建demo_test.py,其实就是复制ssd_notebook.ipynb中的代码,该py文件是完成对于单张图片的测试,对Jupyter不熟,就自己改了,感觉这样要方便一些。
import os import math import random import numpy as np import tensorflow as tf 
import cv2 slim = tf.contrib.slim import matplotlib.pyplot as plt import 
matplotlib.image as mpimg import sys sys.path.append('../') from nets import 
ssd_vgg_300, ssd_common, np_methods from preprocessing import 
ssd_vgg_preprocessing from notebooks import visualization # TensorFlow session: 
grow memory when needed. TF, DO NOT USE ALL MY GPU MEMORY!!! gpu_options = 
tf.GPUOptions(allow_growth=True) config = 
tf.ConfigProto(log_device_placement=False, gpu_options=gpu_options) isess = 
tf.InteractiveSession(config=config) # Input placeholder. net_shape = (300, 
300) data_format = 'NHWC' img_input = tf.placeholder(tf.uint8, shape=(None, 
None, 3)) # Evaluation pre-processing: resize to SSD net shape. image_pre, 
labels_pre, bboxes_pre, bbox_img = ssd_vgg_preprocessing.preprocess_for_eval( 
img_input, None, None, net_shape, data_format, 
resize=ssd_vgg_preprocessing.Resize.WARP_RESIZE) image_4d = 
tf.expand_dims(image_pre, 0) # Define the SSD model. reuse = True if 'ssd_net' 
in locals() else None ssd_net = ssd_vgg_300.SSDNet() with 
slim.arg_scope(ssd_net.arg_scope(data_format=data_format)): predictions, 
localisations, _, _ = ssd_net.net(image_4d, is_training=False, reuse=reuse) # 
Restore SSD model. ckpt_filename = '../checkpoints/ssd_300_vgg.ckpt' # 
ckpt_filename = '../checkpoints/VGG_VOC0712_SSD_300x300_ft_iter_120000.ckpt' 
isess.run(tf.global_variables_initializer()) saver = tf.train.Saver() 
saver.restore(isess, ckpt_filename) # SSD default anchor boxes. ssd_anchors = 
ssd_net.anchors(net_shape) # Main image processing routine. def 
process_image(img, select_threshold=0.5, nms_threshold=.45, net_shape=(300, 
300)): # Run SSD network. rimg, rpredictions, rlocalisations, rbbox_img = 
isess.run([image_4d, predictions, localisations, bbox_img], 
feed_dict={img_input: img}) # Get classes and bboxes from the net outputs. 
rclasses, rscores, rbboxes = np_methods.ssd_bboxes_select( rpredictions, 
rlocalisations, ssd_anchors, select_threshold=select_threshold, 
img_shape=net_shape, num_classes=21, decode=True) rbboxes = 
np_methods.bboxes_clip(rbbox_img, rbboxes) rclasses, rscores, rbboxes = 
np_methods.bboxes_sort(rclasses, rscores, rbboxes, top_k=400) rclasses, 
rscores, rbboxes = np_methods.bboxes_nms(rclasses, rscores, rbboxes, 
nms_threshold=nms_threshold) # Resize bboxes to original image shape. Note: 
useless for Resize.WARP! rbboxes = np_methods.bboxes_resize(rbbox_img, rbboxes) 
return rclasses, rscores, rbboxes # Test on some demo image and visualize 
output. #测试的文件夹 path = '../demo/' image_names = sorted(os.listdir(path)) 
#文件夹中的第几张图,-1代表最后一张 img = mpimg.imread(path + image_names[-1]) rclasses, 
rscores, rbboxes = process_image(img) # visualization.bboxes_draw_on_img(img, 
rclasses, rscores, rbboxes, visualization.colors_plasma) 
visualization.plt_bboxes(img, rclasses, rscores, rbboxes) 
 
4.将自己的数据集做成VOC2007格式放在该工程下面
5. 修改datasets文件夹中pascalvoc_common.py文件,将训练类修改别成自己的
#原始的 # VOC_LABELS = { # 'none': (0, 'Background'), # 'aeroplane': (1, 
'Vehicle'), # 'bicycle': (2, 'Vehicle'), # 'bird': (3, 'Animal'), # 'boat': (4, 
'Vehicle'), # 'bottle': (5, 'Indoor'), # 'bus': (6, 'Vehicle'), # 'car': (7, 
'Vehicle'), # 'cat': (8, 'Animal'), # 'chair': (9, 'Indoor'), # 'cow': (10, 
'Animal'), # 'diningtable': (11, 'Indoor'), # 'dog': (12, 'Animal'), # 'horse': 
(13, 'Animal'), # 'motorbike': (14, 'Vehicle'), # 'person': (15, 'Person'), # 
'pottedplant': (16, 'Indoor'), # 'sheep': (17, 'Animal'), # 'sofa': (18, 
'Indoor'), # 'train': (19, 'Vehicle'), # 'tvmonitor': (20, 'Indoor'), # } #修改后的 
VOC_LABELS = { 'none': (0, 'Background'), 'pantograph':(1,'Vehicle'), } 
6.  
将图像数据转换为tfrecods格式,修改datasets文件夹中的pascalvoc_to_tfrecords.py文件,然后更改文件的83行读取方式为’rb‘,如果你的文件不是.jpg格式,也可以修改图片的类型。
此外, 修改67行,可以修改几张图片转为一个tfrecords
7.运行tf_convert_data.py文件,但是需要传给它一些参数:
linux 
在SSD-Tensorflow-master文件夹下创建tf_conver_data.sh,文件写入内容如下:
DATASET_DIR=./VOC2007/     #VOC数据保存的文件夹(VOC的目录格式未改变)  
 OUTPUT_DIR=./tfrecords_  #自己建立的保存tfrecords数据的文件夹       
 python ./tf_convert_data.py \     
   --dataset_name=pascalvoc \         
   --dataset_dir=${DATASET_DIR} \   
   --output_name=voc_2007_train \ 
   --output_dir=${OUTPUT_DIR}  
windows     +pychram
配置pycharm-->run-->Edit Configuration
Script parameters中写入:--dataset_name=pascalvoc --dataset_dir=./VOC2007/ 
--output_name=voc_2007_train --output_dir=./tfrecords_
运行tf_convert_data.py文件
生成tfrecords文件过程中你会看到 生成tfrecords文件完毕后你会看到 
 
8.训练模型train_ssd_network.py文件中修改
 
train_ssd_network.py文件中网络参数配置,若需要改,在此文件中进行修改,如:
其他需要修改的地方
a.   nets/ssd_vgg_300.py  (因为使用此网络结构) ,修改87 和88行的类别 
b. train_ssd_network.py,修改类别120行,GPU占用量,学习率,batch_size等 
 c eval_ssd_network.py 修改类别,66行 
d. datasets/pascalvoc_2007.py 根据自己的训练数据修改整个文件 
# (Images, Objects) statistics on every class. # TRAIN_STATISTICS = { # 
'none': (0, 0), # 'aeroplane': (238, 306), # 'bicycle': (243, 353), # 'bird': 
(330, 486), # 'boat': (181, 290), # 'bottle': (244, 505), # 'bus': (186, 229), 
# 'car': (713, 1250), # 'cat': (337, 376), # 'chair': (445, 798), # 'cow': 
(141, 259), # 'diningtable': (200, 215), # 'dog': (421, 510), # 'horse': (287, 
362), # 'motorbike': (245, 339), # 'person': (2008, 4690), # 'pottedplant': 
(245, 514), # 'sheep': (96, 257), # 'sofa': (229, 248), # 'train': (261, 297), 
# 'tvmonitor': (256, 324), # 'total': (5011, 12608), # } # TEST_STATISTICS = { 
# 'none': (0, 0), # 'aeroplane': (1, 1), # 'bicycle': (1, 1), # 'bird': (1, 1), 
# 'boat': (1, 1), # 'bottle': (1, 1), # 'bus': (1, 1), # 'car': (1, 1), # 
'cat': (1, 1), # 'chair': (1, 1), # 'cow': (1, 1), # 'diningtable': (1, 1), # 
'dog': (1, 1), # 'horse': (1, 1), # 'motorbike': (1, 1), # 'person': (1, 1), # 
'pottedplant': (1, 1), # 'sheep': (1, 1), # 'sofa': (1, 1), # 'train': (1, 1), 
# 'tvmonitor': (1, 1), # 'total': (20, 20), # } # SPLITS_TO_SIZES = { # 
'train': 5011, # 'test': 4952, # } # (Images, Objects) statistics on every 
class. TRAIN_STATISTICS = { 'none': (0, 0), 'pantograph': (1000, 1000), } 
TEST_STATISTICS = { 'none': (0, 0), 'pantograph': (1000, 1000), } 
SPLITS_TO_SIZES = { 'train': 500, 'test': 500, } 
9.通过加载预训练好的vgg16模型,训练网络
下载预训练好的vgg16模型,解压放入checkpoint文件中,如果找不到vgg_16.ckpt文件,可以在下面的链接中点击下载。
链接:https://pan.baidu.com/s/1diWbdJdjVbB3AWN99406nA 密码:ge3x
按照之前的方式,同样,如果你是linux用户,你可以新建一个.sh文件,文件里写入
DATASET_DIR=./tfrecords_/ TRAIN_DIR=./train_model/ 
CHECKPOINT_PATH=./checkpoints/vgg_16.ckpt python3 ./train_ssd_network.py \ 
--train_dir=./train_model/ \ #训练生成模型的存放路径 --dataset_dir=./tfrecords_/ \ #数据存放路径 
--dataset_name=pascalvoc_2007 \ #数据名的前缀 --dataset_split_name=train \ 
--model_name=ssd_300_vgg \ #加载的模型的名字 
--checkpoint_path=./checkpoints/vgg_16.ckpt \ #所加载模型的路径 
--checkpoint_model_scope=vgg_16 \ #所加载模型里面的作用域名 
--checkpoint_exclude_scopes=ssd_300_vgg/conv6,ssd_300_vgg/conv7,ssd_300_vgg/block8,ssd_300_vgg/block9,ssd_300_vgg/block10,ssd_300_vgg/block11,ssd_300_vgg/block4_box,ssd_300_vgg/block7_box,ssd_300_vgg/block8_box,ssd_300_vgg/block9_box,ssd_300_vgg/block10_box,ssd_300_vgg/block11_box 
\ 
--trainable_scopes=ssd_300_vgg/conv6,ssd_300_vgg/conv7,ssd_300_vgg/block8,ssd_300_vgg/block9,ssd_300_vgg/block10,ssd_300_vgg/block11,ssd_300_vgg/block4_box,ssd_300_vgg/block7_box,ssd_300_vgg/block8_box,ssd_300_vgg/block9_box,ssd_300_vgg/block10_box,ssd_300_vgg/block11_box 
\ --save_summaries_secs=60 \ #每60s保存一下日志 --save_interval_secs=600 \ 
#每600s保存一下模型 --weight_decay=0.0005 \ #正则化的权值衰减的系数 --optimizer=adam \ #选取的最优化函数 
--learning_rate=0.001 \ #学习率 --learning_rate_decay_factor=0.94 \ #学习率的衰减因子 
--batch_size=24 \ --gpu_memory_fraction=0.9 #指定占用gpu内存的百分比 
如果你是windows+pycharm中运行,除了在上述的run中Edit 
Configuration配置,你还可以打开Terminal,在这里运行代码,输入即可
python ./train_ssd_network.py --train_dir=./train_model/ 
--dataset_dir=./tfrecords_/ --dataset_name=pascalvoc_2007 
--dataset_split_name=train --model_name=ssd_300_vgg 
--checkpoint_path=./checkpoints/vgg_16.ckpt --checkpoint_model_scope=vgg_16 
--checkpoint_exclude_scopes=ssd_300_vgg/conv6,ssd_300_vgg/conv7,ssd_300_vgg/block8,ssd_300_vgg/block9,ssd_300_vgg/block10,ssd_300_vgg/block11,ssd_300_vgg/block4_box,ssd_300_vgg/block7_box,ssd_300_vgg/block8_box,ssd_300_vgg/block9_box,ssd_300_vgg/block10_box,ssd_300_vgg/block11_box 
--trainable_scopes=ssd_300_vgg/conv6,ssd_300_vgg/conv7,ssd_300_vgg/block8,ssd_300_vgg/block9,ssd_300_vgg/block10,ssd_300_vgg/block11,ssd_300_vgg/block4_box,ssd_300_vgg/block7_box,ssd_300_vgg/block8_box,ssd_300_vgg/block9_box,ssd_300_vgg/block10_box,ssd_300_vgg/block11_box 
--save_summaries_secs=60 --save_interval_secs=600 --weight_decay=0.0005 
--optimizer=adam --learning_rate=0.001 --learning_rate_decay_factor=0.94 
--batch_size=24 --gpu_memory_fraction=0.9 
 
 
 
热门工具 换一换