导读

*
前几天和一个朋友讨论了他们公司的系统问题,传统的单体应用,集群部署,他说近期服务的并发量可能会出现瞬时增加的风险,虽然部署了集群,但是通过压测后发现请求延迟仍然是很大,想问问我有什么改进的地方。我沉思了一会,现在去改架构显然是不可能的,于是我给出了一个建议,让他去做个接口限流,这样能够保证瞬时并发量飙高也不会出现请求延迟的问题,用户的体验度也会上去。
* 至于什么是接口限流?怎么实现接口限流?如何实现单机应用的限流?如何实现分布式应用的限流?本篇文章将会详细阐述。
限流的常见几种算法

* 常见的限流算法有很多,但是最常用的算法无非以下四种。
固定窗口计数器



* 固定算法的概念如下
* 将时间划分为多个窗口
* 在每个窗口内每有一次请求就将计数器加一
* 如果计数器超过了限制数量,则本窗口内所有的请求都被丢弃当时间到达下一个窗口时,计数器重置。
* 固定窗口计数器是最为简单的算法,但这个算法有时会让通过请求量允许为限制的两倍。考虑如下情况:限制 1 秒内最多通过 5
个请求,在第一个窗口的最后半秒内通过了 5 个请求,第二个窗口的前半秒内又通过了 5 个请求。这样看来就是在 1 秒内通过了 10 个请求。


滑动窗口计数器



* 滑动窗口计数器算法概念如下:
* 将时间划分为多个区间;
* 在每个区间内每有一次请求就将计数器加一维持一个时间窗口,占据多个区间;
* 每经过一个区间的时间,则抛弃最老的一个区间,并纳入最新的一个区间;
* 如果当前窗口内区间的请求计数总和超过了限制数量,则本窗口内所有的请求都被丢弃。
* 滑动窗口计数器是通过将窗口再细分,并且按照时间 " 滑动
",这种算法避免了固定窗口计数器带来的双倍突发请求,但时间区间的精度越高,算法所需的空间容量就越大。
漏桶算法



* 漏桶算法概念如下:
* 将每个请求视作 " 水滴 " 放入 " 漏桶 " 进行存储;
* “漏桶 " 以固定速率向外 " 漏 " 出请求来执行如果 " 漏桶 " 空了则停止 " 漏水”;
* 如果 " 漏桶 " 满了则多余的 " 水滴 " 会被直接丢弃。
* 漏桶算法多使用队列实现,服务的请求会存到队列中,服务的提供方则按照固定的速率从队列中取出请求并执行,过多的请求则放在队列中排队或直接拒绝。
* 漏桶算法的缺陷也很明显,当短时间内有大量的突发请求时,即便此时服务器没有任何负载,每个请求也都得在队列中等待一段时间才能被响应。
令牌桶算法



* 令牌桶算法概念如下:
* 令牌以固定速率生成。
* 生成的令牌放入令牌桶中存放,如果令牌桶满了则多余的令牌会直接丢弃,当请求到达时,会尝试从令牌桶中取令牌,取到了令牌的请求可以执行。
* 如果桶空了,那么尝试取令牌的请求会被直接丢弃。
* 令牌桶算法既能够将所有的请求平均分布到时间区间内,又能接受服务器能够承受范围内的突发请求,因此是目前使用较为广泛的一种限流算法。
单体应用实现

*
在传统的单体应用中限流只需要考虑到多线程即可,使用Google开源工具类guava即可。其中有一个RateLimiter专门实现了单体应用的限流,使用的是令牌桶算法。
* 单体应用的限流不是本文的重点,官网上现成的API,读者自己去看看即可,这里不再详细解释。
分布式限流

* 分布式限流和熔断现在有很多的现成的工具,比如Hystrix,Sentinel 等,但是还是有些企业不引用外来类库,因此就需要自己实现。
* Redis作为单线程多路复用的特性,很显然能够胜任这项任务。
Redis如何实现

* 使用令牌桶的算法实现,根据前面的介绍,我们了解到令牌桶算法的基础需要两个个变量,分别是桶容量,产生令牌的速率。
* 这里我们实现的就是每秒产生的速率加上一个桶容量。但是如何实现呢?这里有几个问题。
*
需要保存什么数据在redis中?

* 当前桶的容量,最新的请求时间
* 以什么数据结构存储?
*
因为是针对接口限流,每个接口的业务逻辑不同,对并发的处理也是不同,因此要细化到每个接口的限流,此时我们选用HashMap的结构,hashKey是接口的唯一id,可以是请求的uri,里面的分别存储当前桶的容量和最新的请求时间。
* 如何计算需要放令牌?
* 根据redis保存的上次的请求时间和当前时间比较,如果相差大于的产生令牌的时间(陈某实现的是1秒)则再次产生令牌,此时的桶容量为当前令牌+产生的令牌
* 如何保证redis的原子性?
* 保证redis的原子性,使用lua脚本即可解决。
*
有了上述的几个问题,便能很容易的实现。

开撸

1、lua脚本如下:
local ratelimit_info =
redis.pcall('HMGET',KEYS[1],'last_time','current_token') local last_time =
ratelimit_info[1] local current_token = tonumber(ratelimit_info[2]) local
max_token = tonumber(ARGV[1]) local token_rate = tonumber(ARGV[2]) local
current_time = tonumber(ARGV[3]) if current_token == nil then current_token =
max_token last_time = current_time else local past_time =
current_time-last_time if past_time>1000 then current_token =
current_token+token_rate last_time = current_time end ## 防止溢出 if
current_token>max_token then current_token = max_token last_time = current_time
end end local result = 0 if(current_token>0) then result = 1 current_token =
current_token-1 last_time = current_time end
redis.call('HMSET',KEYS[1],'last_time',last_time,'current_token',current_token)
return result
* 调用lua脚本出四个参数,分别是接口方法唯一id,桶容量,每秒产生令牌的数量,当前请求的时间戳。
2、 SpringBoot代码实现

* 采用Spring-data-redis实现lua脚本的执行。
* Redis序列化配置: /** * 重新注入模板 */ @Bean(value = "redisTemplate") @Primary public
RedisTemplate redisTemplate(RedisConnectionFactory redisConnectionFactory){
RedisTemplate<String, Object> template = new RedisTemplate<>();
template.setConnectionFactory(redisConnectionFactory); ObjectMapper
objectMapper = new ObjectMapper();
objectMapper.setSerializationInclusion(JsonInclude.Include.NON_NULL);
objectMapper.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
//设置序列化方式,key设置string 方式,value设置成json StringRedisSerializer
stringRedisSerializer = new StringRedisSerializer();
Jackson2JsonRedisSerializer jsonRedisSerializer = new
Jackson2JsonRedisSerializer(Object.class);
jsonRedisSerializer.setObjectMapper(objectMapper);
template.setEnableDefaultSerializer(false);
template.setKeySerializer(stringRedisSerializer);
template.setHashKeySerializer(stringRedisSerializer);
template.setValueSerializer(jsonRedisSerializer);
template.setHashValueSerializer(jsonRedisSerializer); return template; }
* 限流工具类 /** * @Description 限流工具类 * @Author CJB * @Date 2020/3/19 17:21 */
public class RedisLimiterUtils { private static StringRedisTemplate
stringRedisTemplate=ApplicationContextUtils.applicationContext.getBean(StringRedisTemplate.class);
/** * lua脚本,限流 */ private final static String TEXT="local ratelimit_info =
redis.pcall('HMGET',KEYS[1],'last_time','current_token')\n" + "local last_time
= ratelimit_info[1]\n" + "local current_token = tonumber(ratelimit_info[2])\n"
+ "local max_token = tonumber(ARGV[1])\n" + "local token_rate =
tonumber(ARGV[2])\n" + "local current_time = tonumber(ARGV[3])\n" + "if
current_token == nil then\n" + " current_token = max_token\n" + " last_time =
current_time\n" + "else\n" + " local past_time = current_time-last_time\n" + "
\n" + " if past_time>1000 then\n" + "\t current_token =
current_token+token_rate\n" + "\t last_time = current_time\n" + " end\n" + "\n"
+ " if current_token>max_token then\n" + " current_token = max_token\n" +
"\tlast_time = current_time\n" + " end\n" + "end\n" + "\n" + "local result =
0\n" + "if(current_token>0) then\n" + " result = 1\n" + " current_token =
current_token-1\n" + " last_time = current_time\n" + "end\n" +
"redis.call('HMSET',KEYS[1],'last_time',last_time,'current_token',current_token)\n"
+ "return result"; /** * 获取令牌 * @param key 请求id * @param max 最大能同时承受多少的并发(桶容量)
* @param rate 每秒生成多少的令牌 * @return 获取令牌返回true,没有获取返回false */ public static
boolean tryAcquire(String key, int max,int rate) { List<String> keyList = new
ArrayList<>(1); keyList.add(key); DefaultRedisScript<Long> script = new
DefaultRedisScript<>(); script.setResultType(Long.class);
script.setScriptText(TEXT); return
Long.valueOf(1).equals(stringRedisTemplate.execute(script,keyList,Integer.toString(max),
Integer.toString(rate), Long.toString(System.currentTimeMillis()))); } }
* 采用拦截器+注解的方式实现,注解如下: /** * @Description
限流的注解,标注在类上或者方法上。在方法上的注解会覆盖类上的注解,同@Transactional * @Author CJB * @Date
2020/3/20 13:36 */ @Inherited @Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME) public @interface RateLimit { /** *
令牌桶的容量,默认100 * @return */ int capacity() default 100; /** * 每秒钟默认产生令牌数量,默认10个 *
@return */ int rate() default 10; }
* 拦截器如下: /** * @Description 限流的拦器 * @Author CJB * @Date 2020/3/19 14:34 */
@Component public class RateLimiterIntercept implements HandlerInterceptor {
@Override public boolean preHandle(HttpServletRequest request,
HttpServletResponse response, Object handler) throws Exception { if (handler
instanceof HandlerMethod){ HandlerMethod handlerMethod=(HandlerMethod)handler;
Method method = handlerMethod.getMethod(); /** * 首先获取方法上的注解 */ RateLimit
rateLimit = AnnotationUtils.findAnnotation(method, RateLimit.class);
//方法上没有标注该注解,尝试获取类上的注解 if (Objects.isNull(rateLimit)){ //获取类上的注解 rateLimit =
AnnotationUtils.findAnnotation(handlerMethod.getBean().getClass(),
RateLimit.class); } //没有标注注解,放行 if (Objects.isNull(rateLimit)) return true;
//尝试获取令牌,如果没有令牌了 if
(!RedisLimiterUtils.tryAcquire(request.getRequestURI(),rateLimit.capacity(),rateLimit.rate())){
//抛出请求超时的异常 throw new TimeOutException(); } } return true; } }
*
SpringBoot配置拦截器的代码就不贴了,以上就是完整的代码,至此分布式限流就完成了。

*
如果觉得作者写的好,有所收获的话,点个关注推荐一下哟!!!