.NET开发人员如何开始使用ML.NET

发布时间:2019-05-19 21:35  浏览次数:41

随着谷歌,Facebook发布他们的工具机器学习工具Tensorflow 2和PyTorch ,微软的CNTK 2.7之后不再继续更新(
https://docs.microsoft.com/zh-cn/cognitive-toolkit/releasenotes/cntk_2_7_release_notes

<https://docs.microsoft.com/zh-cn/cognitive-toolkit/releasenotes/cntk_2_7_release_notes>
),Build 2019 微软也发布了ML.NET 1.0
,这是一个面向机器学习开发者的新框架。可以说2019年是机器学习社区普及化的一年,所有的这些发布清楚地表明了IT行业的发展方向。从数据集改进模型到新的模型更新,以及优化硬件。

ML.NET一直在微软的研究部门的工作。这些创新已经用于他们自己的产品,如Windows Defender,Microsoft
Office(Powerpoint设计理念,Excel图表推荐),Azure机器学习,PowerBI。
ML.NET旨在提供终端工作流程,以便在机器学习(预处理,特征工程,建模,评估和操作)的各个步骤中将ML用于.NET应用程序。

ML.NET 1.0提供以下关键组件:

* 数据表示
* 机器学习任务(分类,回归,异常检测等)
* 数据特征工程
机器学习模型应该让分析师的生活更轻松,现在甚至可以构建这些模型,因为新框架的设计考虑了AutoML。除了通常的机器学习任务外,ML.NET还支持AutoML。

对于机器学习初学者,Microsoft开发人员建议从Visual Studio中的ML.NET模型构建器和任何平台上的ML.NET
CLI开始。对于可以随时构建模型的场景,AutoML API也非常方便。

使用ML.NET模型构建器,只需右键单击即可向应用程序添加机器学习。


<https://img2018.cnblogs.com/blog/510/201905/510-20190519213620922-605976347.png>

资料来源:微软

在命令行使用ML.NET

还引入了另一个工具ML.NET CLI(命令行工具),它允许使用AutoML和ML.NET生成ML.NET模型。ML.NET
CLI快速遍历特定ML任务的数据集(目前支持回归和分类)并生成最佳模型。

CLI除了生成最佳模型外,还允许用户为最佳性能模型生成模型训练和 消费模型代码。

ML.NET CLI是跨平台的,是.NET CLI 的全局工具。Visual Studio扩展ML.NET Model Builder 还使用ML.NET
CLI提供模型构建器功能。

安装ML.NET CLI:

dotnet tool install -g mlnet

这是使用回归预测出租车票价的代码

加载数据集

IDataView trainingDataView = mlContext.Data.LoadFromTextFile(TrainDataPath,
hasHeader: true);

IDataView testDataView = mlContext.Data.LoadFromTextFile(TestDataPath,
hasHeader: true);

运行AutoML二进制分类

ExperimentResult experimentResult =
mlContext.Auto().CreateRegressionExperiment(ExperimentTime)
.Execute(trainingDataView, LabelColumnName, progressHandler: new
RegressionExperimentProgressHandler());

模型评估

ITransformer model = experimentResult.BestRun.Model;

并使用测试数据集评估其质量(taxi-fare-test.csv)。

Regression.Evaluate() 计算已知票价与模型预测值之间的差异,以生成各种指标。

var predictions = trainedModel.Transform(testDataView);

var metrics =
mlContext.Regression.Evaluate(predictions,scoreColumnName:“Score”);

创建预测引擎

var predEngine = mlContext.Model.CreatePredictionEngine<TaxiTrip,
TaxiTripFarePrediction>(model);

计算分数

var predictedResult = predEngine.Predict(taxiTripSample);

上面是使用Visual Studio内部的模型构建器以及CLI命令测试AutoML,还有一个API可以在.Net应用程序中使用它,使用非常简单,添加[
Microsoft.ML.AutoML ] nuget包到项目中就可以使用API 进行工作


<https://img2018.cnblogs.com/blog/510/201905/510-20190519213431684-1877297568.png>

ML.Net示例仓库中 <https://github.com/dotnet/machinelearning-samples>有一整套示例
<https://github.com/dotnet/machinelearning-samples>
。可以重用了Common文件夹中的一些类来通过API使用AutoML 。

参考

* 如何使用ML.NET自动化机器学习API
<https://docs.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/how-to-use-the-automl-api>
* 使用CLI自动生成二进制分类器
<https://docs.microsoft.com/en-us/dotnet/machine-learning/tutorials/mlnet-cli?tabs=windows>
* 机器学习模型生成器
<https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet/model-builder>
* 如何安装ML.NET命令行界面(CLI)工具
<https://docs.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/install-ml-net-cli>
* 机器学习.Net样本 <https://github.com/dotnet/machinelearning-samples>

标签

归档

阅读排行