一、数据分析师应该具备哪些技能

数据分析人才热度也是高居不下,一方面企业的数据量在大规模的增长,对于数据分析的需求与日俱增;另一方面,相比起其他的技术职位,数据分析师的候选者要少得多。


要明确学习的路径,最有效的方式就是看具体的职业、工作岗位对于技能的具体需求。
我们从拉勾上找了一些最具有代表性的数据分析师职位信息,来看看薪资不菲的数据分析师,到底需要哪些技能。





其实企业对数据分析师的基础技能需求差别不大,可总结如下:

* SQL数据库的基本操作,会基本的数据管理
* 会用Excel/SQL做基本的数据分析和展示
* 会用脚本语言进行数据分析,Python or R
* 有获取外部数据的能力,如爬虫
* 会基本的数据可视化技能,能撰写数据报告
* 熟悉常用的数据挖掘算法:以回归分析为主,决策树,逻辑回归,SVM,随机森林等。
二、数据分析流程


其次是数据分析的流程,一般可以按“数据获取-数据存储与提取-数据预处理-数据建模与分析-数据可视化”这样的步骤来实施一个数据分析项目。按照这个流程,每个部分需要掌握的细分知识点如下:



高效的学习路径是什么?就是数据分析的这个流程。按这样的顺序循序渐进,你会知道每个部分需要完成的目标是什么,需要学习哪些知识点,哪些知识是暂时不必要的。

三、如何学习数据分析技能?
接下来我们分别从每一个部分讲讲具体应该学什么、怎么学。

3.1、数据获取:公开数据、Python爬虫

外部数据的获取方式主要有以下两种。


第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。给大家推荐一些常用的可以获取数据集的网站:

UCI:加州大学欧文分校开放的经典数据集,被很多数据挖掘实验室采用。
http://archive.ics.uci.edu/ml/datasets.html
<http://archive.ics.uci.edu/ml/datasets.html>

国家数据:数据来源于中国国家统计局,包含了我国经济民生等多个方面的数据。
http://data.stats.gov.cn/ <http://data.stats.gov.cn/>

CEIC:超过128个国家的经济数据,能精确查找GDP、进出口零售,销售等深度数据。
http://www.ceicdata.com/zh-hans <http://www.ceicdata.com/zh-hans>

中国统计信息网:国家统计局官方网站,汇集了国民经济和社会发展统计信息。
http://www.tjcn.org/ <http://www.tjcn.org/>

优易数据:由国家信息中心发起,国内领先的数据交易平台,很多免费数据。
http://www.youedata.com/ <http://www.youedata.com/>

另一种获取外部数据的方式就是爬虫。


比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。

在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数………

以及,如何用 Python 库(urllib、BeautifulSoup、requests、scrapy)实现网页爬虫。如果是初学,建议从
urllib+BeautifulSoup 开始。

常用的的电商网站、问答网站、二手交易网站、婚恋网站、招聘网站等,都可以爬到非常有价值的数据。

3.2、数据存取:SQL语言


在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。而且大多数的企业,都会以SQL的形式来存储数据,如果你是一个分析师,也至少要懂得SQL的操作,能够查询、提取公司的数据。

SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:


提取特定情况下的数据:企业数据库里的数据一定是大而繁复的,你需要提取你需要的那一部分。比如你可以根据你的需要提取2017年所有的销售数据、提取今年销量最大的50件商品的数据、提取上海、广东地区用户的消费数据……,SQL可以通过简单的命令帮你完成这些工作。

数据库的增、删、查、改:这些是数据库最基本的操作,但只要用简单的命令就能够实现,所以你只需要记住命令就好。


数据的分组聚合、如何建立多个表之间的联系:这个部分是SQL的进阶操作,多个表之间的关联,在你处理多维度、多个数据集的时候非常有用,这也让你可以去处理更复杂的数据。

SQL这部分比较简单,主要是掌握一些基本的语句。当然,还是建议你找几个数据集来实际操作一下,哪怕是最基础的查询、提取等。

3.3、数据预处理:Python(pandas)

很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。

比如销售数据,有一些渠道的销售是没有及时录入的,有一些数据是记录重复的。比如用户行为数据,有很多无效的操作对分析没有意义,就需要进行删除。

那么我们需要用相应的方法去处理,比如残缺数据,我们是直接去掉这条数据,还是用临近的值去补全,这些都是需要考虑的问题。

对于数据预处理,学会 pandas (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:

选择:数据访问(标签、特定值、布尔索引等)
缺失值处理:对缺失数据行进行删除或填充
重复值处理:重复值的判断与删除
异常值处理:清除不必要的空格和极端、异常数据
相关操作:描述性统计、Apply、直方图等
合并:符合各种逻辑关系的合并操作
分组:数据划分、分别执行函数、数据重组
Reshaping:快速生成数据透视表

网上有很多 pandas 的教程,主要是一些函数的应用,也都非常简单,可查 pandas 官方文档。

3.4、概率论及统计学知识


数据整体分布是怎样的?什么是总体和样本?中位数、众数、均值、方差等基本的统计量如何应用?如何在不同的场景中做假设检验?数据分析方法大多源于统计学的概念,所以统计学的知识也是必不可少的。需要掌握的知识点如下:

基本统计量:均值、中位数、众数、百分位数、极值等
其他描述性统计量:偏度、方差、标准差、显著性等
其他统计知识:总体和样本、参数和统计量、ErrorBar
概率分布与假设检验:各种分布、假设检验流程
其他概率论知识:条件概率、贝叶斯等


有了统计学的基本知识,你就可以用这些统计量做基本的分析了。通过可视化的方式来描述数据的指标,其实可以得出很多结论了:比如排名前100的是哪些,平均水平是怎样的,近几年的变化趋势如何……

你可以使用 Seaborn、matplotlib 等(python包)做一些可视化的分析,通过各种可视化统计图,并得出具有指导意义的结果。

3.5、Python 数据分析

如果你有一些了解的话,就知道目前市面上其实有很多 Python
数据分析的书籍,但每一本都很厚,学习阻力非常大。但其实真正最有用的那部分信息,只是这些书里很少的一部分。

比如掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下:

回归分析:线性回归、逻辑回归
基本的分类算法:决策树、随机森林……
基本的聚类算法:k-means……
特征工程基础:如何用特征选择优化模型
调参方法:如何调节参数优化模型
Python 数据分析包:scipy、numpy、scikit-learn等

在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。


然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去学习如何通过特征提取、参数调节来提升预测的精度。这就有点数据挖掘和机器学习的味道了,其实一个好的数据分析师,应该算是一个初级的数据挖掘工程师了。

你可以通过 Python 中的 scikit-learn 库来实现数据分析、数据挖掘建模和分析的全过程。

四、加入我们

为了方便交流,我们建立了一个数据分析群,欢迎小伙伴们加入数据分析交流群。